
An Improved Algorithm for Fast K-Word

Proximity Search Based on Multi-Component

Key Indexes

Alexander B. Veretennikov1

Ural Federal University, Yekaterinburg, Russia
Chair of Calculation Mathematics and Computer Science

alexander@veretennikov.ru,
WWW home page: http://veretennikov.org

This is a pre-print of a contribution published in Arai K., Kapoor S., Bhatia
R. (eds) Intelligent Systems and Applications. IntelliSys 2020. Advances in In-
telligent Systems and Computing, vol 1251, published by Springer, Cham. The
final authenticated version is available online at:
https://doi.org/10.1007/978-3-030-55187-2 37.

Abstract. A search query consists of several words. In a proximity full-
text search, we want to find documents that contain these words near
each other. This task requires much time when the query consists of high-
frequently occurring words. If we cannot avoid this task by excluding
high-frequently occurring words from consideration by declaring them as
stop words, then we can optimize our solution by introducing additional
indexes for faster execution. In a previous work, we discussed how to
decrease the search time with multi-component key indexes. We had
shown that additional indexes can be used to improve the average query
execution time up to 130 times if queries consisted of high-frequently
occurring words. In this paper, we present another search algorithm that
overcomes some limitations of our previous algorithm and provides even
more performance gain.

Keywords: full-text search, search engines, inverted indexes, additional
indexes, proximity search, term proximity, information retrieval, query
processing, document-at-a-time, DAAT.

1 Introduction

Full-text search is a cornerstone of information retrieval. By a list of words,
a user can obtain relevant documents that contain these words. Inverted files
are used for this search [23, 11, 21, 2]. Words occur in documents with different
frequencies, and an example of the frequency distribution of words is represented
by Zipf’s law [22], which is presented in Figure 1. On the horizontal axis, we plot
words from high-frequently occurring to low-frequently occurring. On the vertical
axis, we plot the numbers of occurrences of the corresponding words in a typical
text collection.

https://doi.org/10.1007/978-3-030-55187-2_37


2 Alexander B. Veretennikov

Fig. 1. A typical word frequency distribution.

The most frequently occurring words (see Figure 1, on the left side) occur
significantly more often than ordinary words (see Figure 1, on the right side).
This factor can affect the search performance in some cases. If the user needs
only the document that contains the query words, then the search query time
depends only on the number of documents in the collection. For each document
and each word that occurs in the document, we need to store in the index exactly
one record, which represents the fact of occurrence of the word somewhere in
the document.

For other kinds of full-text searches, we need to store a record for each oc-
currence of each word in each document [12, 8], which considerably affects per-
formance. In this case, the search time depends on the occurrence frequency in
the texts of the queried words, and it is common to observe a search system
that evaluates queries, which contain high-frequently occurring words in a sig-
nificantly longer time than queries that consist only of ordinary words (see the
left side and the right side of Figure 1 respectively). See an example in [14].

One way is to skip the most frequently occurring words. However, there are
some concerns about this approach [18]. A high-frequently occurring word may
have a unique meaning in the context of the specific query. The authors [18]
stated literally that “stopping or ignoring common words will have an unpre-
dictable effect”. Examples are provided in [18, 14]. We can consider as an example
the query “Who are you who”. The word “Who” has a specific meaning in this
query: The Who are an English rock band, and “Who are You” is one of their
songs.

If the user needs the document that contains the query as a phrase, that is, the
queried words must exist in the document in sequential order one after another,
then additional phrase indexes can be used for performance improvement [18].
However, the phrase indexes cannot be used for proximity full-text search, that
is, when the user needs a document that contains queried words near each other.
In the latter kind of searches, some other words are allowed in the text between
queried words. We have proposed other methods to solve this task [14, 16, 17].

In our methodology, we define several types of queries, depending on the
kinds of words they contain. For each type of query, we can use specific types



An Improved Algorithm for Fast K-Word Proximity Search 3

of additional indexes. The kinds of words are specified on the basis of word
frequencies.

The importance of proximity full-text searches is determined by involving
the proximity factor in modern information-retrieval methods [20, 3, 13, 10].

Early termination approaches [1, 9] can reduce the query processing time
by sorting the posting lists in the index according to the relevance in decreasing
order. In this case, irrelevant records, which are located at the end of each posting
list, can be skipped. However, these methods cannot be used in an effective
way when we need proximity full-text searches [17]. When we are sort posting
lists according to some factors, they are sorted independently of each other.
However, in a specific query, we have several words linked together, and we
cannot skip any part of any posting list because it is always a possibility that
records for a document that contains queried words near each other occur at
the end of a posting list, due to the document having low relevance according
to the nonproximity factors. This problem was investigated in [20] but only for
two-word queries, demonstrating to be a huge limitation.

In the following sections, we introduce several lemma types and several index
types, the definition of which is based on the defined lemma types. Then, we
provide an overview of previously developed search algorithms. Then, the new
algorithm is described. Then, the results of the experiments is presented.

2 Lemmatization and Lemma Types

We use a morphological analyzer for lemmatization. For each word in the dictio-
nary, the analyzer returns the list of lemmas, i.e., basic or canonical forms. Our
dictionary now supports two languages.

Let us sort all lemmas in decreasing order of their occurrences in the texts.
We call such a sorted list FL-list.

Let the first SWCount elements of FL-list be “stop” lemmas.

Let the second FUCount elements of FL-list be “frequently used” lemmas.

Let all remaining lemmas be “ordinary” lemmas.

SWCount and FUCount are parameters in which the representative example
values are 700 and 2100.

We use FL-numbers to establish an order in the set of all lemmas. For ex-
ample, “you” < “who” because “you” has FL-number 47, and “who” has FL-
number 293.

The examples for each type of word are as follows:

stop lemmas: “are”, “war”, “time”, “be”.

frequently used lemmas: “beautiful”, “red”, “hair”.

ordinary lemmas: “glorious”, “promising”.

Although we introduce the notion “stop lemma”, we do not exclude such
lemmas from the search. This division of lemmas is only performed to introduce
different optimization methods for each kind of lemma.



4 Alexander B. Veretennikov

3 Index Type

The expanded (f, s, t) index or three-component key index [16, 17] is the list of
occurrences of the lemma f for which lemmas s and t both occur in the text at
distances less than or equal to MaxDistance from f .

We create the expanded (f, s, t) index only when f , s, and t are all stop
lemmas and only for the case in which f ≤ s ≤ t. There, MaxDistance is a
parameter which may have a value of 5, 7, 9 or even more.

Each posting in the index includes the distance between f and s in the text
and the distance between f and t in the text.

The expanded (w, v) index or two-component key index [16, 17] is the list of
occurrences of the lemma w for which lemma v occurs in the text at a distance
less than or equal to MaxDistance from w.

We create the expanded (w, v) index only when w is a frequently used lemma
and v is a frequently used or ordinary lemma. Each posting in the index includes
the distance between w and v in the text. If both w and v are frequently used
lemmas, then we create an index for them only if w < v.

An ordinary inverted index with NSW records [16, 17] contains the posting
lists for each frequently used and ordinary lemma. Each posting includes an
NSW (near stop word) record. This record contains information about all stop
lemmas that occur in the texts near the position of the specified posting. NSW
records can also be skipped if it is required.

Different types of indexes can be used depending on the types of lemmas in
the query.

For example, if the query contains several ordinary lemmas and a frequently
used lemma, then (w, v) indexes can be used instead an ordinary index for ob-
taining information about the occurrence in the texts of these lemmas.

If the query contains only stop lemmas, we use (f, s, t) indexes, because two-
component indexes do not provide enough performance [14]. This case is the
most complex from the performance point of view. We investigated other types
of queries in our previous work [16], and the task for them seems to be solved. In
the current work, we investigate only queries that consist only of stop lemmas.

Let us consider an example. Let us have two documents D0 and D1. The
words are numbered, and these numbers are zero based.

D0: Who are you is the album by The Who.
D1: Who has reality, who is real, who is true.
Stop lemmas: who, are, you, is, the, by, etc.
We have several three-component keys there, for example: (you, are, who),

(have, who, who), (the, by, who), (the, you, are), (be, who, who), etc.
Let us note that “be” is the lemma of “is”, and “have” is the lemma of “has”.
For the key (be, who, who) we have, for example, the records in the index

are as follows:
(0, 3,−3, 5), (1, 4,−4,−1), (1, 4,−1, 2), (1, 4,−4, 2), (1, 7,−4,−1).

Let us consider (0, 3,−3, 5), for example. There, 0 is the id of the document
D0, 3 is the position of “is” in the document, (−3) is the distance between the
first “who” and “is”, and 5 is the distance between the second “who” and “is”.



An Improved Algorithm for Fast K-Word Proximity Search 5

For the key (you, are, who) we have, in the record (0, 2,−1,−2), for example,
0 is the id of the documentD0, 2 is the position of “you” in the document, (−1) is
the distance between “are” and “you” in the document, and (−2) is the distance
between “you” and “who” in the document.

4 Types of Search Algorithms

The expanded (f, s, t) index contains (ID, P,D1, D2) records, in which ID is
the identifier of the document, P is the position of the word in the document,
D1 is the distance between s and f , and D2 is the distance between t and f .

If we have two records, A = (ID1, P1, X1, X2) and B = (ID2, P2, Y 1, Y 2),
then we define that A < B if one of the following conditions is met: ID1 < ID2
or (ID1 = ID2 and P1 < P2). These records are stored in the index in increasing
order.

The iterator object can be used for reading all the records for the specific key.
The iterator object has the Nextmethod with which we move to the next record.
The iterator object also has the V alue property to access the current record. The
iterator object also has the Key property to access the key of the iterator. We
can access specific components of the three-component key by Key[0], Key[1],
and Key[2].

We defined several search algorithms for multi-component key indexes.

In the Main-Cell algorithm [17], we need to select the most frequently oc-
curring lemma in the query. This lemma is called the main lemma of the query.
Then, we form a list of multi-component keys. The main lemma is always the
first component of each key. For other components, we are using the remaining
lemmas of the query.

We create an iterator object for each key. Then, in each iterator object, we
use the Next method to move to an equal position. After all iterator objects
have equal position (ID, P ), we check that all lemmas are present nearby that
position and calculate the size of the fragment of the text which contains the
query. The drawback of this algorithm is that we need to duplicate the main
lemma in several keys.

In the Intermediate-Lists algorithm [14], we do not need to select a main
lemma. We select a list of multi-component keys in such a way that each
lemma of the query is used in some key. For each key, we have a list of records
(ID, P,D1, D2). From each record (ID, P,D1, D2), we can create three records
— (ID, P ), (ID, P + D1), (ID, P +D2) — that correspond to occurrences in
the texts of f , s and t accordingly.

The algorithm works as follows. We move in each iterator object to the same
document. Then, for each iterator, we read all records for this document and pro-
duce three intermediate streams of records. Each intermediate stream contains
a list of occurrences of a specific lemma in the document. Then, we combine the
intermediate streams to produce results. The drawback of this algorithm is that
we need to produce intermediate streams.



6 Alexander B. Veretennikov

Fig. 2. The search algorithm.

In the Optimized-Intermediate-Lists algorithm [15], we are obtaining more
performance gain by applying optimized key selection methods. But we still need
to produce intermediate posting lists with this algorithm.

In this paper, we present a novel algorithm in which we combine the several
posting lists for multi-component keys into a list of results without creating
intermediate posting lists. We call this algorithm Combiner algorithm.

5 The Search Algorithm

Let us have subquery Q, which is a list consisting of n lemmas.
The search algorithm consists of the following steps (see Figure 2).

1) Lemmatization
2) Building the list of subqueries.
3) Processing subqueries.
4) Combining results.

Let us consider the following query: “who are you who”. After lemmatization,
we have [who] [are, be] [you] [who], because the word “are” has two lemmas in
our dictionary, namely, “are” and “be”.

For a query that consists of high-frequently occurring words, we need to
create subqueries, that is, [who] [are] [you] [who] and [who] [be] [you] [who]. We
need to have a subquery in the form of a list of lemmas. Then, we evaluate each
subquery and combine the results.

The processing of the evaluation of the subquery contains the following stages
(see Figure 3).

1) Selection of the keys.
2) Building an iterator for each key.
3) Search.
4) Calculation of the relevance.

6 Key Selection

We have a subquery that is a list of lemmas. The elements of the list are num-
bered starting with zero. For each key, we need to select three components, and



An Improved Algorithm for Fast K-Word Proximity Search 7

Fig. 3. The processing of the evaluation of the subquery.

we need to select those using lemmas that occur at different indexes in the sub-
query. We also want to exclude duplicates from consideration, if the subquery
has some lemmas that appear several times. When we select a lemma as a com-
ponent of a key, we “mark” it as “used”. Let Used be a set of lemmas that is
initially empty. When we mark a lemma, we include it into Used. We will use
occurrence frequency in the texts of the lemmas as a factor for selection.

For the first component of the first key, we select the most frequently occur-
ring unused lemma in the query.

For the second component of the key, we need to select an unused lemma in
the query in which the index in the query is different from the index in the query
of the first component of the key. If we have several acceptable lemmas, we select
one among them that is the least frequently occurring in the texts. If we do not
have any acceptable lemma, then we select a lemma using the aforementioned
conditions, except we ignore the “used” mark, and we mark this component with
* to designate it as duplicate.

For the third component of the key, we need to select an unused lemma in the
query in which the index in the query is different from the indexes in the query
of the first and the second components of the key. If we have several acceptable
lemmas, we select one among them that is the least frequently occurring in the
texts. If we do not have any acceptable lemma, then we select a lemma using
the aforementioned conditions except we ignore the “used” mark, and we mark
this component with * to designate it as duplicate.

Then, we mark all selected lemmas as “used”.
If we have any unused lemmas, we repeat the process and form another key;

otherwise, all keys are selected.
Let us consider an example. Let us say that we have a query “Who are you

and why did you say what you did”. This query can be found in Cecil Forester
Scott’s novel “Lord Hornblower”. Let us consider its subquery [who] [are] [you]
[and] [why] [do] [you] [say] [what] [you] [do]. With FL-numbers, the query will
have the following appearance: [who: 293] [are: 268] [you: 47] [and: 28] [why: 528]
[do: 154] [you: 47] [say: 165] [what: 132] [you: 47] [do: 154].

We select “and: 28” as the first component of the first key, because it is
the most frequently occurring lemma; that is, it has the least FL-number (28)



8 Alexander B. Veretennikov

among the lemmas of the subquery. Then, we select “why: 528” as the second
component of the key and “who: 293” as the third component of the key. We
mark “and”, “why” and “who” as used.

We have other unused lemmas and can select another key. We select “you:
47” as the first component of the second key, and “are: 268” and “say: 165” as
the second and the third components of the second key. We mark all selected
lemmas as “used”. Then, we select “what: 132” as the first component of the
third key. We select “do: 154” as the second component of the key. There are no
“unused” lemmas remaining. Therefore, we ignore the “used” mark and select
“why*: 528” as the third component of the third key. This component we mark
with * because it is a duplicate.

7 Search for a Subquery

Queries are usually evaluated by Term-At-A-Time (TAAT), Document-At-A-
Time (DAAT) or Score-At-A-Time (SAAT) approaches [4, 7]. DAAT approaches
have advantages over SAAT and TAAT approaches [7].

We use a Document-At-A-Time (DAAT) kind of algorithm. An iterator al-
lows reading the posting list for a key from the start to the end. The posting list
is sorted in increasing order.

The search procedure is a three-level process (see Figure 4):
Step 1. We move to a document. All iterators are positioned on the specific

document.
Step 2. We move to a position in the document at which the queried lemmas

are near each other.
Step 3. We put information about the position of the lemmas in special tables.

We use the tables to check that all queried lemmas are present and to calculate
the exact position of the result in the text.

If we do not have an acceptable position in the document in Step 2, then we
move to the next document (move to the start of Step 1); otherwise, we repeat
it.

If we do not have another document in Step 1, then we exit from the search;
otherwise, we repeat it.

8 Step 1

If we have read and processed all postings, then we exit from the search; other-
wise, we perform the following in a loop:

1) Let S be the iterator with the minimum document identifier, which is defined
by its V alue.ID.

2) Let E be the iterator with the maximum document identifier.
3) If S.ID = E.ID, then we exit from the loop and move to Step 2; otherwise,

we perform S.Next() and move to the start of the loop again.

The cost of one iteration of this loop is O(log n). Both S and E are local
variables for this procedure.



An Improved Algorithm for Fast K-Word Proximity Search 9

Fig. 4. Search procedure diagram.

9 Step 2

We perform the search in the document ID. We perform in a loop the following.

1) If we have read all postings for the document ID in some iterator, we break
the loop; otherwise, we perform the following sub steps 2-4.

2) Let S be the iterator with the minimum position value V alue.P .
3) Let E be the iterator with the maximum position value. Let Delta =

E.V alue.P − S.V alue.P .
4) If Delta < MaxDistance × 2, then break the loop and move to Step 3;

otherwise, we perform S.Next() and move to the start of the loop again.

The cost of one iteration of this loop is O(log n). We can use binary heaps
[19] to implement this approach.

Step 2 ends when one of the following cases occurs:

1) After execution of S.Next, we move to another document in S, or we do not
have any other postings in S. In this case, we break the loop and move to
Step 1.

2) We have Delta < MaxDistance × 2. In this case, we have a place in the
document that can potentially contain all queried lemmas near each other.
Then, we break the loop and move to Step 3.

10 Step 3

At the start of this step, we have established that in the current position in
the document, we have all keys, meaning that all queried lemmas are near each



10 Alexander B. Veretennikov

other. We have two tables, namely, Lemma table and Position table. We will
use these tables to obtain the fragments of the text that contain the queried
lemmas. Afterward, we move to Step 2 again.

10.1 The Lemma Table

The Lemma table is used for the following.

1) To check whether all queried lemmas exist in the text or not.
2) To determine the start and the end of the fragment of the text that contains

the queried lemmas. The fragment of the text must have the minimum length
among the acceptable fragments.

The Lemma table contains an array that consists of SWCount entries.
Each entry corresponds to one stop lemma by its FL-number.
Each entry has two fields, that is, Max and Count.
Max is the count of the occurrences of the corresponding lemma in the query.

We initialize this field at the start of the search. Count is the count of occurrences
of the corresponding lemma in the current fragment of the text, which is initially
zero.

The Lemma table itself has Max and Count fields.
The Max field of the Lemma table equals to the length of the subquery. We

initialize this field at the start of the search.
The idea of the use of the Lemma table is the following. We need two queues.
Let us have a queue of records (P,Lem), where the lemma Lem is some

lemma from the subquery and P is the position of the lemma Lem in the doc-
ument. This queue we call Source. Let the queue be sorted in increasing order
of P .

Let us also have a second queue. The second queue we call Processed. This
queue will also be sorted in increasing order of P .

We will process all elements of the Source from the start to the end.
We perform the following in a loop, until we have any element in Source:

1) Let E be the first, that is, the minimum, element from the Source queue
(see 3.2 in Figure 4).

2) We remove E from the Source queue (see 3.3 in Figure 4).
3) We place E into the Processed queue into the end of the queue (see 3.3 in

Figure 4).
4) We will add information about E into the Lemma table (see 3.4 in Figure

4). This information includes the following (4.a — 4.c).

a. We obtain the entry Entry by the value of E.Lem.
b. If Entry.Max > Entry.Count, then we increment the Lemma.Count

field of the Lemma table.
c. We increment Entry.Count.

5) We check the Lemma table (3.5 in Figure 4).



An Improved Algorithm for Fast K-Word Proximity Search 11

10.2 Checking the Lemma Table (Step 3.5 in Figure 4)

If Lemma.Count 6= Lemma.Max, then we do nothing.
Otherwise, Lemma.Count = Lemma.Max. Then, we have in the text all

required lemmas.
Then, we need to obtain the minimum fragment of the text, which contains

the queried lemmas.
For this, we will use Processed queue.
We perform in a loop the following:

1) Let S be the first element of Processed queue.
2) We obtain the entry Entry by the value of S.Lem.
3) If Entry.Count > Entry.Max, then we can decrease the length of the frag-

ment of the text. In this case, we decrease Entry.Count, remove S from
Processed, and go to 1; otherwise, we break the loop.

When we exit from the loop, S defines the start of the fragment of the text,
and E defines the end of the fragment of the text.

The next question is where we obtain the Source queue and how do we
perform the sorting of Source with O(1) computational complexity.

10.3 Position Table

The Position table has the method Set(P,Lem) where P is the position of the
lemma Lem in the document. It has the property Start which specifies the start
of the current fragment of the text that is interesting for us. It has the method
Shift(P ) which can be used to set the value of Start.

At the start of Step 3, we execute the method

Shift(P −min(P,MaxDistance))

where P is the minimum current position value V alue.P among all iterators.
In the internal implementation of the Position table, we use three buffers

each with a length WindowSize. Each buffer is an array which contains
WindowSize entries. The following condition must be met:

MaxDistance× 2 ≤ WindowSize ≤ 64.

Each buffer also has a corresponding 64-bit Mask field. Each entry of the
buffer has a corresponding bit in the Mask field of the buffer.

Each entry of the buffer has three fields: Lem, P , and Next.
When we execute Set(P,Lem), we calculate the relative position in the

Position table, that is,
R = P − Start.

Then, we define the buffer by performing R/WindowSize.
Then, we define a relative position in the buffer

RelativeP = R%WindowSize



12 Alexander B. Veretennikov

(let % be the modulus operator).
The variable RelativeP defines the target entry T in the buffer. We set

T.Lem = Lem and T.P = P for the target entry. We also set the bit with
number RelativeP in the Mask field of the buffer to 1.

From the buffer, we can produce a queue, which is a sorted linked list.
We can use the Bit Scan Forward operation, which is one processor command,

on the Mask field to determine the index of the first entry of the queue. We can
reset the bit of the entry to zero and perform the Bit Scan Forward operation
again to move to the second entry and so on. To build the queue, we use Next
fields of entries. The queue will be initially sorted by this creation process.

The problem here is that one buffer has a limited length. To solve this prob-
lem, we use three buffers.

Let WindowF lushBorder be WindowSize × 1.5, that is, the center of the
second buffer.

10.4 The Search Procedure with Three Buffers

For each iterator IT , we perform the following.
We execute the methods:

Set(IT.V alue.P, IT.Key[0]),

Set(IT.V alue.P + IT.V alue.D1, IT.Key[1]),

Set(IT.V alue.P + IT.V alue.D2, IT.Key[2])

and perform IT.Next(). All these actions we perform until

IT.V alue.P < Start+WindowF lushBorder.

See 3.1 in Figure 4.
We also take in consideration (*) marks of each component of IT.Key. We

perform Set only for these components that do not have the (*) mark. That is,
if the third component has the (*) mark, we do not perform Set(IT.V alue.P +
IT.V alue.D2, IT.Key[2]).

Each call of Set defines an occurrence P of a lemma in the document. That
means for each three-component key, we may produce up to three values, and
each of them defines an occurrence of a lemma in the document. We are sure
that all values with condition P < Start+WindowSize are already produced.

This is because we have WindowSize ≥ MaxDistance × 2, and for any
iterator IT , all records with condition

IT.V alue.P < Start+WindowF lushBorder

are already processed.
For any iterator IT , any next record

IT.V alue.P ≥ Start+WindowF lushBorder = Start+WindowSize× 1.5 ≥



An Improved Algorithm for Fast K-Word Proximity Search 13

Start+WindowSize+MaxDistance.

Therefore,

IT.V alue.P + IT.V alue.D1 ≥ Start+WindowSize,

because we have:

−MaxDistance ≤ IT.V alue.D1 ≤ MaxDistance.

For IT.V alue.D2, we have the same.
After we process all the iterators, we put all updated entries from the first

buffer in the Source queue (we use Bit Scan Forward for this).
This completes step 3.1 in Figure 4.
Then, we use the Lemma table to produce a list of search results (see 3.2-3.5

in Figure 4). Each search result is a fragment of the document which contains
the queried lemmas. In this production process, all elements of the Source queue
will be processed. However, after the processing, some entries may remain in the
Processed queue.

10.5 Buffer Switch (See 3.6 in Figure 4)

Let us note that if any item exists in the Processed queue, then this item can
only belong to the first buffer.

After the Source queue is processed, we can go to the start of Step 3 again.
We renumber the buffers in a cyclic way. The first buffer we make the third
buffer; the second buffer will be the first buffer; and the third buffer will be the
second buffer.

We require three buffers because of these entries in the Processed queue. We
cannot reuse these entries again, until they remain in the Processed queue.
However, we have no problems here. For any iterator IT , after the buffer
switch, we will read all records with the condition: IT.V alue.P < Startnew +
WindowF lushBorder. That means, these records will affect the entries only in
the first and second buffers, which means the new third buffer, that is, the former
first buffer, will not be affected.

We also remove each entry Entry from the Processed queue with the fol-
lowing condition:

(Start+WindowSize− Entry.P ) > MaxDistance× 2.

The following entries that can be added into the Processed queue in the next
iteration of Step 3 can lie only in the new first buffer, that is, the former second
buffer. These following entries will be far from such entries which we remove, so
we can safely free them.

In fact, we need to free them, because it can be that no records will be added
into Processed in the next iteration, and this cleaning of the Processed queue
ensures that no item will exist in the Processed queue that belongs to the first
or the second buffer at the start of Step 3.

Finally, we set Start = Start+WindowSize.



14 Alexander B. Veretennikov

10.6 Lemma Table Renumbering

To reduce the size of the Lemma table, we can assign a local number, with
respect to the subquery, for each lemma. In this case, the size of the Lemma
table will be equal to the count of unique lemmas in the subquery.

11 Experiment 1

In our experiments, we use the collection of texts from [16, 17, 14] which consists
of approximately 195 000 documents of plain text, fiction and magazine articles
with a total size of 71.5 GB. The average document text size is approximately
384.5 KB. In our previous experiments, we usedMaxDistance = 5, SWCount =
700, and FUCount = 2100.

We need to use the same parameters to perform a comparison between
the algorithms. The search experiments were conducted using the experimen-
tal methodology from [17]. We assume that in typical texts, the words are dis-
tributed similarly, as Zipf stated in [22]. Therefore, the results obtained with our
text collection will be relevant to other collections.

We used the following computational resources:
CPU: Intel(R) Core(TM) i7 CPU 920 @ 2.67 GHz.
HDD: 7200 RPM. RAM: 24 GB. OS: Microsoft Windows 2008 R2 Enterprise.
We created the following indexes.
Idx1: the ordinary inverted index without any improvements, such as NSW

records [17]. The total size is 95 GB.
Idx2: our indexes, including the ordinary inverted index with the NSW

records and the (w, v) and (f, s, t) indexes, where MaxDistance = 5. The total
size is 746 GB.

Please note that the total size of each type of index includes the size of the
repository (indexed texts in compressed form), which is 47.2 GB.

The size of Idx2 is considerable, but we assume that we can allocate some
disk space if the performance is required.

We performed 975 queries, and all queries consisted only of stop lemmas.
The query set was also selected as in [16, 17, 14]. All searches were performed in
a single program thread. The query length was from 3 to 5 words.

Jansen et al. [6] have shown by analysis of the query logs of a search system
that for a typical search system, the users use short queries with a length less than
or equal to 5. Queries with a length of 6, for example, represented approximately
1% of all queries in [6].

We performed the following experiments.
SE1: all queries are evaluated using the standard inverted index Idx1.
SE2.1: all queries are evaluated using Idx2 and the Main-Cell algorithm from

[17].
SE2.2: all queries are evaluated using Idx2 and the Intermediate-Lists algo-

rithm from [14].
SE2.3: all queries are evaluated using Idx2 and the Optimized-Intermediate-

Lists algorithm from [15].



An Improved Algorithm for Fast K-Word Proximity Search 15

Fig. 5. Average query execution times for SE1, SE2.1, SE2.2, SE2.3 and SE2.4
(seconds).

Fig. 6. Average query execution times for SE2.1, SE2.2, SE2.3 and SE2.4 (seconds).

SE2.4: all queries are evaluated using Idx2 and the new algorithm presented
in this paper.

Average query times: SE1: 31.27 sec., SE2.1: 0.33 sec., SE2.2: 0.29 sec.,
SE2.3: 0.24 sec., and SE2.4: 0.22 sec.

Average data read sizes per query: SE1: 745 MB, SE2.1: 8.45 MB, SE2.2:
6.82 MB, SE2.3: 6.16 MB, and SE2.4: 6.2 MB.

Average numbers of postings per query: SE1: 193 million, SE2.1: 765 thou-
sand, SE2.2: 559 thousand, SE2.3: 419 thousand, and SE2.4: 423 thousand.

We improved the query processing time by a factor of 94.7 with the SE2.1
algorithm, by a factor of 107.8 with the SE2.2 algorithm, by a factor of 130 with
the SE2.3 algorithm, and by a factor of 142.13 with the SE2.4 algorithm, in
comparison with ordinary inverted files SE1 (see Figure 5).

Let us consider Figure 5. The left-hand bar shows the average query execution
time with the standard inverted indexes. The subsequent bars show the average
query execution times with our indexes with the SE2.1, SE2.2, SE2.3 and
SE2.4 algorithms. Our bars are much smaller than the left-hand bar because
our searches are very fast.

We improved the query processing time by a factor of 1.09 with the SE2.4
algorithm in comparison with the SE2.3 algorithm, by a factor of 1.1 in com-
parison with the SE2.2 algorithm, and by a factor of 1.5 in comparison with the
SE2.1 algorithm (see Figure 6).

We improved the average data read size per query by a factor of 88 with
SE2.1, by a factor of 109.2 with SE2.2 and by a factor of 120 with SE2.3 and
SE2.4, in comparison with ordinary inverted files SE1 (see Figure 7).



16 Alexander B. Veretennikov

Fig. 7. Experiment 1. Average data read sizes per query for SE1, SE2.1, SE2.2, SE2.3
and SE2.4 (MB).

We improved the average data read size per query by a factor of 1.1 with
the SE2.4 algorithm in comparison with the SE2.2 algorithm and by a factor
of 1.36 in comparison with the SE2.1 algorithm (see Figure 7).

12 Experiment 2

For the second experiment GOV2 text collection and the following queries are
used: title queries from TREC Robust Task 2004 (with 250 queries in total),
TREC Terabyte Task from 2004 to 2006 (with 150 queries in total) and TREC
Web Task from 2009 to 2014 (with 300 queries in total), with 700 queries in
total. GOV2 text collection consists of approximately 25 million documents with
a total size of approximately 426 GB, that is approximately 167 GB of plain text
(after HTML tags removal). The average document text size is approximately 7
KB. We used MaxDistance = 5, SWCount = 500, and FUCount = 1050 and
only English dictionary. The value of SWCount is very near to the 421 from [5].

We created the following indexes.
Idx1: the ordinary inverted index without any improvements, such as NSW

records [17]. The total size is 143 GB (included the total size of indexed texts in
compressed form, that is 57.3 GB).

Idx2: our indexes, including the ordinary inverted index with the NSW
records and the (w, v) and (f, s, t) indexes, where MaxDistance = 5. The total
size is 1.29 TB.

The query set can be divided into the following groups depending on lemmas
in a concrete query:

Q1) Only stop lemmas: 12 queries.
Q2) Stop and frequently used and/or ordinary lemmas (i. e. the query has one

or several stop lemmas and some other lemmas that may be frequently used
or ordinary): 298.

Q3) Only frequently used lemmas: 9.
Q4) Frequently used lemmas and ordinary lemmas: 151.
Q5) Only ordinary lemmas: 230.

Accordingly [16], different algorithms will be applied to each kind of the
query when multi-component key indexes are used.



An Improved Algorithm for Fast K-Word Proximity Search 17

For Q1 queries (f, s, t) indexes are used and we have the following results.
Average query times: SE1: 77.673 sec., SE2.1: 5.072 sec., SE2.2: 2.072 sec.,

SE2.3: 1.057 sec., and SE2.4: 0.662 sec.
Average data read sizes per query: SE1: 2.027 GB, SE2.1: 190.6 MB, SE2.2:

57.4 MB, SE2.3: 33.5 MB, and SE2.4: 19.18 MB.
Average numbers of postings per query: SE1: 511.5 million, SE2.1: 17.3

million, SE2.2: 5.08 million, SE2.3: 2.9 million, and SE2.4: 1.6 million.
We improved the average query processing time by a factor of 15.3 with the

SE2.1 algorithm, by a factor of 37.4 with the SE2.2 algorithm, by a factor of 73.4
with the SE2.3 algorithm, and by a factor of 117.4 with the SE2.4 algorithm,
in comparison with ordinary inverted files SE1.

We improved the average query processing time by a factor of 1.59 with the
SE2.4 algorithm in comparison with the SE2.3 algorithm, by a factor of 3.1 in
comparison with the SE2.2 algorithm, and by a factor of 7.6 in comparison with
the SE2.1 algorithm.

For all Q1-Q5 queries we have the following results (with SE2.4 for Q1).
Average query times: Idx1: 13.37 sec., Idx2: 0.521 sec.
Average data read sizes per query: Idx1: 376 MB, Idx2: 12.85 MB.
Average numbers of postings per query: Idx1: 90.2 million, Idx2: 0.81 million.
The average query processing time for multi-component key indexes is similar

with Q1 case (e.g., with Idx2/SE2.4: 0.662 sec. for Q1 and 0.521 sec. for Q1-
Q5), but very different for ordinary inverted index Idx1 (77.673 sec. for Q1
and 13.37 sec. for Q1-Q5). The multi-component key indexes allow to execute
queries that consists of high-frequently occurring lemmas like ordinary queries
in contradistinction with ordinary inverted indexes.

Example queries. Let us consider the following query: how to find the mean.
The query times: SE1: 173.457 sec., SE2.1: 0.468 sec., SE2.2: 0.062 sec.,

SE2.3: 0.109 sec., and SE2.4: 0.094 sec. The query can be executed with multi-
component key indexes significantly faster than with the ordinary index SE1.

Duplicates. Although the average query times for SE2.3 and SE2.4 are near, it
is important that the new algorithm SE2.4 can effective work with duplicates.
Let us consider the following query: to be or not to be. With SE2.4 this query
was evaluated in 1.7 sec. and with SE2.3 in 10.1 sec. (the execution time above
the average because lemmas of the query are very frequently occurring in texts).

13 Incremental solution

Let us consider the search query ”Who I need you” and the following text.
The book that you are looking at is about the famous rock band “The Who”. Their

songs include “I Need You”, “You”, “One at a Time” and “Who are you”.

The partial tracing of the search is presented below. We use the following
values in this example: MaxDistance = 7, WindowSize = 14. The words are
numbered, and these numbers are 1-based.



18 Alexander B. Veretennikov

Shift, Start = 4 (start of Step 3, we use 4 to demonstrate the buffer switch).
Read the posting (19, 20, 15), key (i, need, who) (3.1).
Set (position 19, key i), buffer 1 (3.1).
Set (position 20, key need), buffer 1 (3.1).
Set (position 15, key who), buffer 0 (3.1).
Read the posting (21, 20, 15), key (you, need*, who*) (3.1).
Set (position 21, key you), buffer 1 (3.1).
Read the posting (21, 20, 28), key (you, need*, who*) (3.1).
Set (position 21, key you), buffer 1 (3.1).
Read the posting (22, 20, 15), key (you, need*, who*) (3.1).
Set (position 22, key you), buffer 1 (3.1).
Read the posting (22, 20, 28), key (you, need*, who*) (3.1).
Set (position 22, key you), buffer 1 (3.1).
Populate the Source queue using the data from the first buffer (3.1).
Fetch (position 15, key who) from the Source queue (3.2, 3.3).
Add (key who) into Lemma table, Lemma.Count 6= Lemma.Max (3.4).
Buffer switch, Start = 18 (3.6).
Populate the Source queue using the data from the first buffer (3.1).
Fetch (position 19, key i) from the Source queue (3.2, 3.3).
Add (key i) into Lemma table, Lemma.Count 6= Lemma.Max (3.4).
Fetch (position 20, key need) from the Source queue (3.2, 3.3).
Add (key need) into Lemma table, Lemma.Count 6= Lemma.Max (3.4).
Fetch (position 21, key you) from the Source queue (3.2, 3.3).
Add (key you) into Lemma table, Lemma.Count = Lemma.Max (3.4).
Checking the Lemma Table (3.5) → Result (from 15, to 21).

Please note that WindowSize should be 64 for the better performance.

14 Conclusion

In the paper, we presented a new fast algorithm for proximity full-text search
when a query that consists of high-frequently occurring words is considered. In
the first experiment, we improved the average query processing time by a factor
of 1.09 with the new algorithm in comparison with the algorithm from [15], by
a factor of 1.3 in comparison with the algorithm from [14] and by a factor of 1.5
in comparison with the algorithm from [17]. This improvement can be done by
using the requirement that we need to have a document which contains queried
words near each other. We use three-component key indexes to solve the task.

In the second experiment (GOV2 text collection), we improved the average
query processing time by a factor of 1.59 with the new algorithm in comparison
with the algorithm from [15], by a factor of 3.1 in comparison with the algorithm
from [14], and by a factor of 7.6 in comparison with the algorithm from [17].

We have presented the results of the experiments, showing that the average
time of the query execution with our indexes is 142.13 times less (with a value
of MaxDistance = 5) than that required when using ordinary inverted indexes,
when queries that consist of high-frequently occurring words are evaluated.



An Improved Algorithm for Fast K-Word Proximity Search 19

As we discussed in [17], three component key indexes occupy an important
part of our holistic full-text search methodology. With them, we can evaluate
queries that consist of high-frequently occurring words in an effective way. Other
query types can be evaluated by using different additional indexes; those tasks
are solved in [16] and, therefore, lie outside the scope of the current paper.

The new algorithm overcomes some limitations of our previous algorithm [14,
15], that is, working with duplicate lemmas in the query and creating additional,
considerable sized, intermediate data structures in the memory.

In the future, it will be useful to optimize the index creation times for large
values of MaxDistance. The new algorithm can also be used with any multi-
component indexes and one-component indexes. The author is now creating
indexes for relatively small values of MaxDistance, such as 5, 7, and 9.

The limitation of the proposed indexes is that we search only documents that
contain queried words near each other. Documents in which the queried words
occur at distances that are greater than MaxDistance can be skipped. This
limitation can be overcome by combining the proximity search with additional
indexes with the search without distance [17]. When the former requires a word-
level index, the latter is requires only a document-level index. In the search
without distance, we need only those documents that contain the queried words
anywhere. This approach can produce fine results from the performance point
of view if the documents are relatively large, e.g., several hundreds of kilobytes
each. On the other hand, the modern approaches for calculating the relevance
presuppose that the relevance of the document is inversely proportional to the
square of the distance between searched words in the document [20]. Using this
consideration, we can easily select a value of MaxDistance that is large enough
such that all relevant documents will be found by our additional indexes.

References

1. Anh, V.N., de Kretser, O., Moffat, A.: Vector-space ranking with effective early
termination. SIGIR ’01 Proceedings of the 24th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 35–42. New
Orleans, Louisiana, USA (2001). doi:10.1145/383952.383957

2. Borodin, A., Mirvoda, S., Porshnev, S., Ponomareva, O.: Improving generalized
inverted index lock wait times. Journal of Physics: Conference Series, vol. 944, no. 1,
Article number 012022 (2018). doi:10.1088/1742-6596/944/1/012022

3. Büttcher, S., Clarke, C., Lushman, B.: Term proximity scoring for ad-hoc retrieval
on very large text collections. SIGIR ’06 Proceedings of the 29th annual interna-
tional ACM SIGIR conference on Research and development in information re-
trieval, pp. 621–622 (2006). doi:10.1145/1148170.1148285

4. Caio Moura Daoud, Silva de Moura, E., Carvalho, A., Soares da Silva, A., Fernandes,
D., Rossi, C.: Fast top-k preserving query processing using two-tier indexes. Inf.
Process. Manage, vol. 52, no. 5, pp. 855–872 (2016). doi:10.1016/j.ipm.2016.03.005

5. Fox, C.: A Stop List for General Text. ACM SIGIR Forum, vol. 24, pp. 19–35,
(1989). doi:10.1145/378881.378888

6. Jansen, B. J., Spink, A., Saracevic, T.: Real life, real users, and real needs: A study
and analysis of user queries on the web. Inf. Process. Manage, vol. 36, no. 2, pp. 207–
227 (2000). doi:10.1016/S0306-4573(99)00056-4

doi:10.1145/383952.383957
doi:10.1088/1742-6596/944/1/012022
doi:10.1145/1148170.1148285
doi:10.1016/j.ipm.2016.03.005
doi:10.1145/378881.378888
doi:10.1016/S0306-4573(99)00056-4


20 Alexander B. Veretennikov

7. Jiang, D., Kenneth Wai-Ting Leung, Yang, L., Ng, W.: TEII: topic enhanced
inverted index for top-k document retrieval. Know.-Based Syst, vol. 89, no. C.,
pp. 346–358 (2015). doi:10.1016/j.knosys.2015.07.014

8. Gall, M., Brost, G.: K-Word Proximity Search on Encrypted Data. 30th Interna-
tional Conference on Advanced Information Networking and Applications Work-
shops (WAINA), pp. 365-372 (2016). doi:10.1109/WAINA.2016.104

9. Garcia, S., Williams, H.E., Cannane, A.: Access-ordered indexes. ACSC ’04 Pro-
ceedings of the 27th Australasian Conference on Computer Science. Dunedin. New
Zealand, pp. 7–14 (2004).

10. Lu, X., Moffat, A., Culpepper, J.S.: Efficient and effective higher order proximity
modeling. ICTIR ’16 Proceedings of the 2016 ACM International Conference on the
Theory of Information Retrieval, pp. 21–30, (2016). doi:10.1145/2970398.2970404

11. Luk, R.W.P.: Scalable, statistical storage allocation for extensible inverted file
construction. Journal of Systems and Software archive, vol. 84, no. 7, pp. 1082–1088
(2011). doi:10.1016/j.jss.2011.01.049

12. Sadakane, K.: Fast algorithms for k-word proximity search. IEICE Transactions on
Fundamentals of Electronics Communications and Computer Sciences, vol. 84, no.
9, pp. 2311–2318 (2001).

13. Rasolofo, Y., Savoy, J.: Term proximity scoring for keyword-based retrieval sys-
tems. European Conference on Information Retrieval (ECIR) 2003: Advances in
Information Retrieval, pp. 207–218 (2003). doi:10.1007/3-540-36618-0 15

14. Veretennikov, A.B.: Proximity full-text search with a response time guarantee by
means of additional indexes with multi-component keys. Selected Papers of the
XX International Conference on Data Analytics and Management in Data Intensive
Domains (DAMDID/RCDL 2018), Moscow, Russia, October 9-12 2018, pp. 123–130
(2018). http://ceur-ws.org/Vol-2277

15. Veretennikov, A.B.: Proximity Full-Text Search by Means of Additional Indexes
with Multi-component Keys: In Pursuit of Optimal Performance. In: Manolopoulos
Y., Stupnikov S. (eds) Data Analytics and Management in Data Intensive Domains.
DAMDID/RCDL 2018. Communications in Computer and Information Science,
vol, 1003, pp. 111–130 (2019), Springer, Cham. doi:10.1007/978-3-030-23584-0 7

16. Veretennikov, A.B.: Proximity Full-Text Search with a Response Time Guar-
antee by Means of Additional Indexes. In: Arai K., Kapoor S., Bhatia R.
(eds) Intelligent Systems and Applications. IntelliSys 2018. Advances in Intel-
ligent Systems and Computing, vol. 868, pp. 936–954 (2019), Springer, Cham.
doi:10.1007/978-3-030-01054-6 66

17. Veretennikov, A.B.: Proximity full-text search with response time guarantee by
means of three component keys. Bulletin of the South Ural State University. Series:
Computational Mathematics and Software Engineering, vol. 7, no. 1, pp. 60–77
(2018). (in Russian)

18. Williams, H.E., Zobel, J., Bahle, D.: Fast phrase querying with combined indexes.
ACM Transactions on Information Systems (TOIS)., vol. 22, no. 4, pp. 573–594
(2004). doi:10.1145/1028099.1028102

19. Williams, J.W. J.: Algorithm 232 heapsort. Communications of the ACM, vol. 7,
no. 6, pp. 347–348 (1964). doi:10.2307/408772

20. Yan, H., Shi, S., Zhang, F., Suel, T., Wen, J.-R.: Efficient term proximity search
with term-pair indexes. CIKM ’10 Proceedings of the 19th ACM International Con-
ference on Information and Knowledge Management. Toronto, pp. 1229–1238 (2010).
doi:10.1145/1871437.1871593

doi:10.1016/j.knosys.2015.07.014
doi:10.1 109/WAINA.2016.104
doi:10.1145/2970398.2970404
doi:10.1016/j.jss.2011.01.049
doi:10.1007/3-540-36618-0_15
http://ceur-ws.org/Vol-2277
doi:10.1007/978-3-030-23584-0_7
doi:10.1007/978-3-030-01054-6_66
doi:10.1145/1028099.1028102
doi:10.2307/408772
doi:10.1145/1871437.1871593


An Improved Algorithm for Fast K-Word Proximity Search 21

21. Yang, Y. Ning, H.: Block linked list index structure for large data full text re-
trieval. 13th International Conference on Natural Computation, Fuzzy Systems and
Knowledge Discovery (ICNC-FSKD), pp 2123-2128. (2017).

22. Zipf, G.: Relative frequency as a determinant of phonetic change. Harvard Studies
in Classical Philology, vol. 40, pp. 1–95 (1929). doi:10.2307/408772

23. Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Comput. Surv.,
vol. 38, no. 2, Article 6 (2006). doi:10.1145/1132956.1132959

doi:10.2307/408772
doi:10.1145/1132956.1132959

	An Improved Algorithm for Fast K-Word Proximity Search Based on Multi-Component Key Indexes

